•3.0 Architecture and Design

Explain use cases and purpose for frameworks, best practices and secure configuration guides.

- Industry-standard frameworks and reference architectures
 - Regulatory
 - Non-regulatory
 - National vs. international
 - Industry-specific frameworks
- Benchmarks/secure configuration guides
 - Platform/vendor-specific guides
 - Web server
 - Operating system
 - Application server
 - Network infrastructure devices
 - General purpose guides

- Defense-in-depth/layered security
 - Vendor diversity
 - Control diversity
 - Administrative
 - Technical
 - User training

Given a scenario, implement secure network architecture concepts.

- Zones/topologies
 - DMZ
 - Extranet
 - Intranet
 - Wireless
 - Guest
 - Honeynets
 - NAT
 - Ad hoc
- Segregation/segmentation/isolation
 - Physical

- Logical (VLAN)
- Virtualization
- Air gaps
- Tunneling/VPN
 - Site-to-site
 - Remote access
- Security device/technology placement
 - Sensors
 - Correlation engines

- Proxies

- Firewalls
- VPN concentrators
- SSL accelerators
- Load balancers
- DDoS mitigator
- Aggregation switches
- Taps and port mirror
- SDN

- Hardware/firmware security
 - FDE/SED
 - TPM
 - HSM
 - UEFI/BIOS
 - Secure boot and attestation
 - Supply chain
 - Hardware root of trust
 - EMI/EMP
- Operating systems
 - Types
 - Network
 - Server

- Workstation
- Appliance
- Kiosk
- Mobile OS
- Patch management
- Disabling unnecessary
- ports and services
- Least functionality
- Secure configurations
- Trusted operating system
- Application whitelisting/blacklisting
- Disable default accounts/passwords

- Peripherals
 - Wireless keyboards
 - Wireless mice
 - Displays
 - WiFi-enabled MicroSD cards

Compli

- Printers/MFDs
- External storage devices
- Digital cameras

CompTIA Security+ Certification Exam Objectives Version 1.0 (Exam Number: SY0-501)

- Given a scenario, implement secure systems design.
- - Collectors

- Filters

Explain the importance of secure staging deployment concepts.

- Sandboxing
- Environment
 - Development
 - Test

- Staging
- Production
- Secure baseline
- Integrity measurement

³⁵ Explain the security implications of embedded systems.

- SCADA/ICS
- Smart devices/IoT
 - Wearable technology
- Home automation

- SoC
- RTOS
- Printers/MFDs
- Camera systems

- Special purpose
 - Medical devices
 - Vehicles
 - Aircraft/UAV

^{3.6} Summarize secure application development and deployment concepts.

- Development life-cycle models
 Waterfall vs. Agile
- Secure DevOps
- Security automation
 - Continuous integration
 - Baselining
 - Immutable systems
 - Infrastructure as code
- Version control and change management
- Provisioning and deprovisioning

Secure coding techniques

- Proper error handling
- Proper input validation
- Normalization
- Stored procedures
- Code signing
- Encryption
- Obfuscation/camouflage
- Code reuse/dead code
- Server-side vs. client-side execution and validation

- Memory management
- Use of third-party libraries and SDKs - Data exposure
- Code quality and testing
 - Static code analyzers
 - Dynamic analysis (e.g., fuzzing)
 - Stress testing
 - Sandboxing
 - Model verification
- Compiled vs. runtime code

Summarize cloud and virtualization concepts.

Hypervisor

- Type I
- Type II
- Application cells/containers
- VM sprawl avoidance
- VM escape protection
- Cloud storage

Cloud deployment models

- SaaS
- PaaS
- IaaS
- Private
- Public
- Hybrid
- Community

- On-premise vs. hosted vs. cloud
- VDI/VDE
- Cloud access security broker
- Security as a Service

³⁸ Explain how resiliency and automation strategies reduce risk.

- Automation/scripting
 - Automated courses of action
 - Continuous monitoring
 - Configuration validation
- Templates
- Master image

Non-persistence

- Snapshots
- Revert to known state
- Rollback to known configuration
- Live boot media
- Elasticity

- Scalability
- Distributive allocation
- Redundancy
- Fault tolerance
- High availability
- RAID

Explain the importance of physical security controls.

- Lighting
- Signs
- Fencing/gate/cage
- Security guards
- Alarms
- Safe
- Secure cabinets/enclosures
- Protected distribution/Protected cabling
- Airgap
- Mantrap
- Faraday cage
- Lock types
- Biometrics
- Barricades/bollards
- Tokens/cards

• Environmental controls

- HVAC
- Hot and cold aisles
- Fire suppression
- Cable locks
- Screen filters
- Cameras
- Motion detection
- Logs
- Key management
- Infrared detection

