

-- 2.0 Architecture and Design

- Explain the importance of security concepts in an enterprise environment.
 - · Configuration management
 - Diagrams
 - Baseline configuration
 - Standard naming conventions
 - Internet protocol (IP) schema
 - Data sovereignty
 - · Data protection
 - Data loss prevention (DLP)
 - Masking
 - Encryption
 - At rest
 - In transit/motion
 - In processing
 - Tokenization
 - Rights management

- · Geographical considerations
- Response and recovery controls
- Secure Sockets Layer (SSL)/Transport Layer Security (TLS) inspection
- Hashing
- API considerations
- Site resiliency
 - Hot site
 - Cold site
 - Warm site

• Deception and disruption

- Honeypots
- Honeyfiles
- Honeynets
- Fake telemetry
- DNS sinkhole

Summarize virtualization and cloud computing concepts.

- Cloud models
 - Infrastructure as a service (IaaS)
 - Platform as a service (PaaS)
 - Software as a service (SaaS)
 - Anything as a service (XaaS)
 - Public
 - Community
 - Private
 - Hybrid
- · Cloud service providers

- Managed service provider (MSP)/ managed security service provider (MSSP)
- On-premises vs. off-premises
- · Fog computing
- Edge computing
- Thin client
- Containers
- · Microservices/API

- Infrastructure as code
 - Software-defined networking (SDN)
 - Software-defined visibility (SDV)
- · Serverless architecture
- Services integration
- Resource policies
- Transit gateway
- Virtualization
 - Virtual machine (VM) sprawl avoidance
 - VM escape protection

Summarize secure application development, deployment, and automation concepts.

- Environment
 - Development
 - Test
 - Staging
 - Production
 - Quality assurance (QA)
- · Provisioning and deprovisioning
- · Integrity measurement
- Secure coding techniques
 - Normalization
 - Stored procedures
 - Obfuscation/camouflage

- Code reuse/dead code
- Server-side vs. client-side execution and validation
- Memory management
- Use of third-party libraries and software development kits (SDKs)
- Data exposure
- Open Web Application Security Project (OWASP)
- Software diversity
 - Compiler
 - Binary

Automation/scripting

- Automated courses of action
- Continuous monitoring
- Continuous validation
- Continuous integration
- Continuous delivery
- Continuous deployment
- Elasticity
- Scalability
- Version control

Summarize authentication and authorization design concepts.

- Authentication methods
 - Directory services
 - Federation
 - Attestation
 - Technologies
 - Time-based one-
 - time password (TOTP)
 - HMAC-based one-time
 - password (HOTP)
 - Short message service (SMS)
 - Token key
 - Static codes
 - Authentication applications
 - Push notifications
 - Phone call
 - Smart card authentication

- Biometrics
 - Fingerprint
 - Retina
 - Iris
 - Facial
 - Voice
 - Vein
 - Gait analysis
 - Efficacy rates
 - False acceptance
 - False rejection
 - Crossover error rate

- Multifactor authentication (MFA) factors and attributes
 - Factors
 - Something you know
 - Something you have
 - Something you are
 - Attributes
 - Somewhere you are
 - Something you can do
 - Something you exhibit
 - Someone you know
- Authentication, authorization, and accounting (AAA)
- · Cloud vs. on-premises requirements

Given a scenario, implement cybersecurity resilience.

- Redundancy
 - Geographic dispersal
 - Disk
 - Redundant array of inexpensive disks (RAID) levels
 - Multipath
 - Network
 - Load balancers
 - Network interface card (NIC) teaming
 - Power
 - Uninterruptible power supply (UPS)
 - GeneratorDual supply
 - Managed power distribution units (PDUs)

- Replication
 - Storage area network
 - VM
- · On-premises vs. cloud
- Backup types
 - Full
 - Incremental
 - Snapshot
 - Differential
 - Tape
 - Disk
 - Copy
 - Network-attached storage (NAS)
 - Storage area network
 - Cloud
 - Image
 - Online vs. offline

- Offsite storage
 - Distance considerations
- · Non-persistence
 - Revert to known state
 - Last known-good configuration
 - Live boot media
- · High availability
 - Scalability
- Restoration order
- Diversity
 - Technologies
 - Vendors
 - Crypto
 - Controls

Explain the security implications of embedded and specialized systems.

- Embedded systems
 - Raspberry Pi
 - Field-programmable gate array (FPGA)
 - Arduino
- Supervisory control and data acquisition (SCADA)/industrial control system (ICS)
 - Facilities
 - Industrial
 - Manufacturing
 - Energy
 - Logistics
- Internet of Things (IoT)
 - Sensors
 - Smart devices
 - Wearables
 - Facility automation
 - Weak defaults

- Specialized
 - Medical systems
 - Vehicles
 - Aircraft
- Smart meters
- Voice over IP (VoIP)
- Heating, ventilation, air conditioning (HVAC)
- Drones
- Multifunction printer (MFP)
- Real-time operating system (RTOS)
- Surveillance systems
- · System on chip (SoC)
- Communication considerations
 - 5G
 - Narrow-band
 - Baseband radio

- Subscriber identity module (SIM) cards
- Zigbee
- Constraints
 - Power
 - Compute
 - Network
 - Crypto
 - Inability to patch
 - Authentication
 - Range
 - Cost
 - Implied trust

Explain the importance of physical security controls.

- · Bollards/barricades
- Access control vestibules
- Badges
- Alarms
- Signage
- Cameras
 - Motion recognition
 - Object detection
- Closed-circuit television (CCTV)
- · Industrial camouflage
- Personnel
 - Guards
 - Robot sentries
 - Reception
 - Two-person integrity/control
- Locks
 - Biometrics

- Electronic
- Physical
- Cable locks
- · USB data blocker
- Lighting
- Fencing
- · Fire suppression
- Sensors
 - Motion detection
 - Noise detection
 - Proximity reader
 - Moisture detection
 - Cards
 - Temperature
- Drones
- Visitor logs
- · Faraday cages

- Air gap
- · Screened subnet (previously known as demilitarized zone)
- Protected cable distribution
- Secure areas
 - Air gap
 - Vault
 - Safe
 - Hot aisle
 - Cold aisle
- Secure data destruction
 - Burning
 - Shredding
 - Pulping
 - Pulverizing
 - Degaussing
 - Third-party solutions

Summarize the basics of cryptographic concepts.

- Digital signatures
- · Key length
- · Key stretching
- Salting
- Hashing
- Key exchange
- · Elliptic-curve cryptography
- · Perfect forward secrecy
- Quantum
 - Communications
 - Computing
- · Post-quantum

- Counter

- Ephemeral
- - Authenticated
 - Unauthenticated
- · Modes of operation

- Blockchain
 - Public ledgers
- Cipher suites
 - Stream
 - Block
- · Symmetric vs. asymmetric
- · Lightweight cryptography
- Steganography
 - Audio
 - Video
 - Image
- · Homomorphic encryption
- · Common use cases
 - Low power devices
 - Low latency
 - High resiliency
 - Supporting confidentiality

- Supporting integrity
- Supporting obfuscation
- Supporting authentication
- Supporting non-repudiation
- Limitations
 - Speed
 - Size
 - Weak keys
 - Time
 - Longevity
 - Predictability
 - Reuse
 - Entropy
 - Computational overheads
 - Resource vs. security constraints

