

3.0 Security Engineering and Cryptography

Given a scenario, apply secure configurations to enterprise mobility.

- Managed configurations
 - Application control
 - Password
 - MFA requirements
 - Token-based access
 - Patch repository
 - Firmware Over-the-Air
 - Remote wipe
 - WiFi
 - WiFi Protected Access (WPA2/3)
 - Device certificates
 - Profiles
 - Bluetooth
 - Near-field communication (NFC)
 - Peripherals
 - Geofencing
 - VPN settings

- Geotagging
- Certificate management
- Full device encryption
- Tethering
- Airplane mode
- Location services
- DNS over HTTPS (DoH)
- Custom DNS
- Deployment scenarios
 - Bring your own device (BYOD)
 - Corporate-owned
 - Corporate owned, personally enabled (COPE)
 - Choose your own device (CYOD)
- Security considerations
 - Unauthorized remote activation/ deactivation of devices or features

- Encrypted and unencrypted communication concerns
- Physical reconnaissance
- Personal data theft
- Health privacy
- Implications of wearable devices
- Digital forensics of collected data
- Unauthorized application stores
- Jailbreaking/rooting
- Side loading
- Containerization
- Original equipment manufacturer (OEM) and carrier differences
- Supply chain issues
- eFuse

Given a scenario, configure and implement endpoint security controls.

Hardening techniques

- Removing unneeded services
- Disabling unused accounts
- Images/templates
- Remove end-of-life devices
- Remove end-of-support devices
- Local drive encryption
- Enable no execute (NX)/ execute never (XN) bit
- Disabling central processing unit (CPU) virtualization support
- Secure encrypted enclaves/ memory encryption
- Shell restrictions
- Address space layout randomization (ASLR)

Processes

- Patching
 - Firmware
 - Application
- Logging
- Monitoring

Mandatory access control

- Security-Enhanced Linux (SELinux)/ Security-Enhanced Android (SEAndroid)
- Kernel vs. middleware

Trustworthy computing

- Trusted Platform Module (TPM)
- Secure Boot
- Unified Extensible Firmware Interface (UEFI)/basic input/ output system (BIOS) protection

- Attestation services
- Hardware security module (HSM)
- Measured boot
- Self-encrypting drives (SEDs)

Compensating controls

- Antivirus
- Application controls
- Host-based intrusion detection system (HIDS)/Host-based intrusion prevention system (HIPS)
- Host-based firewall
- Endpoint detection and response (EDR)
- Redundant hardware
- Self-healing hardware
- User and entity behavior analytics (UEBA)

Explain security considerations impacting specific sectors and operational technologies.

- Embedded
 - Internet of Things (IoT)
 - System on a chip (SoC)
 - Application-specific integrated circuit (ASIC)
 - Field-programmable gate array (FPGA)
- ICS/supervisory control and data acquisition (SCADA)
 - Programmable logic controller (PLC)
 - Historian
 - Ladder logic

- Safety instrumented system
- Heating, ventilation, and air conditioning (HVAC)
- Protocols
 - Controller Area Network (CAN) bus
 - Modbus
 - Distributed Network Protocol 3 (DNP3)
 - Zigbee
 - Common Industrial Protocol (CIP)
 - Data distribution service

- Sectors
 - Energy
 - Manufacturing
 - Healthcare
 - Public utilities
 - Public services
 - Facility services

Explain how cloud technology adoption impacts organizational security.

- Automation and orchestration
- · Encryption configuration
- · Logs
 - Availability
 - Collection
 - Monitoring
 - Configuration
 - Alerting
- · Monitoring configurations
- · Key ownership and location

- · Key life-cycle management
- Backup and recovery methods
 - Cloud as business continuity and disaster recovery (BCDR)
 - Primary provider BCDR
 - Alternative provider BCDR
- Infrastructure vs. serverless computing
- Application virtualization
- · Software-defined networking
- Misconfigurations

- · Collaboration tools
- Storage configurations
 - Bit splitting
 - Data dispersion
- Cloud access security broker (CASB)

Given a business requirement, implement the appropriate PKI solution.

- PKI hierarchy
 - Certificate authority (CA)
 - Subordinate/intermediate CA
 - Registration authority (RA)
- Certificate types
 - Wildcard certificate
 - Extended validation
 - Multidomain
 - General purpose
- Certificate usages/profiles/templates
 - Client authentication

- Server authentication
- Digital signatures
- Code signing
- Extensions
 - Common name (CN)
 - Subject alternate name (SAN)
- Trusted providers
- Trust model
- Cross-certification
- Configure profiles
- Life-cycle management

- · Public and private keys
- · Digital signature
- · Certificate pinning
- · Certificate stapling
- Certificate signing requests (CSRs)
- Online Certificate Status Protocol (OCSP)
- vs. certificate revocation list (CRL)
- HTTP Strict Transport Security (HSTS)

Given a business requirement, implement the appropriate cryptographic protocols and algorithms.

- Hashing
 - Secure Hashing Algorithm (SHA)
 - Hash-based message authentication code (HMAC)
 - Message digest (MD)
 - RACE integrity primitives evaluation message digest (RIPEMD)
 - Poly1305
- · Symmetric algorithms
 - Modes of operation
 - Galois/Counter Mode (GCM)
 - Electronic codebook (ECB)
 - Cipher block chaining (CBC)
 - Counter (CTR)
 - Output feedback (OFB)
 - Stream and block
 - Advanced Encryption Standard (AES)

- Triple digital encryption standard (3DES)
- ChaCha
- Salsa20
- Asymmetric algorithms
 - Key agreement
 - Diffie-Hellman
 - Elliptic-curve Diffie-Hellman (ECDH)
 - Signing
 - Digital signature algorithm (DSA)
 - Rivest, Shamir, and Adleman (RSA)
 - Elliptic-curve digital signature algorithm (ECDSA)
- Protocols
 - Secure Sockets Layer (SSL)/ Transport Layer Security (TLS)

- Secure/Multipurpose Internet Mail Extensions (S/MIME)
- Internet Protocol Security (IPSec)
- Secure Shell (SSH)
- EAI
- · Elliptic curve cryptography
 - P256
 - P384
- Forward secrecy
- Authenticated encryption with associated data
- Key stretching
 - Password-based key derivation function 2 (PBKDF2)
 - Bcrypt

Given a scenario, troubleshoot issues with cryptographic implementations.

- Implementation and configuration issues
 - Validity dates
 - Wrong certificate type
 - Revoked certificates
 - Incorrect name
 - Chain issues
 - Invalid root or intermediate CAs
 - Self-signed
 - Weak signing algorithm
 - Weak cipher suite
 - Incorrect permissions
 - Cipher mismatches
 - Downgrade

- Key:
 - Mismatched
 - Improper key handling
 - Embedded keys
 - Rekeying
 - Exposed private keys
 - Crypto shredding
 - Cryptographic obfuscation
 - Key rotation
 - Compromised keys

