

.1.0 Security Operations

Explain the importance of system and network architecture concepts in security operations.

- · Log ingestion
 - Time synchronization
 - Logging levels
- Operating system (OS) concepts
 - Windows Registry
 - System hardening
 - File structure
 - Configuration file locations
 - System processes
 - Hardware architecture
- Infrastructure concepts
 - Serverless
 - Virtualization
 - Containerization

- · Network architecture
 - On-premises
 - Cloud
 - Hybrid
 - Network segmentation
 - Zero trust
 - Secure access secure edge (SASE)
 - Software-defined networking (SDN)
- Identity and access management
 - Multifactor authentication (MFA)
 - Single sign-on (SSO)
 - Federation

- Privileged access management (PAM)
- Passwordless
- Cloud access security broker (CASB)
- Encryption
 - Public key infrastructure (PKI)
 - Secure sockets layer (SSL) inspection
- · Sensitive data protection
 - Data loss prevention (DLP)
 - Personally identifiable information (PII)
 - Cardholder data (CHD)

Given a scenario, analyze indicators of potentially malicious activity.

- Network-related
 - Bandwidth consumption
 - Beaconing
 - Irregular peer-to-peer communication
 - Rogue devices on the network
 - Scans/sweeps
 - Unusual traffic spikes
 - Activity on unexpected ports
- Host-related
 - Processor consumption
 - Memory consumption
 - Drive capacity consumption

- Unauthorized software
- Malicious processes
- Unauthorized changes
- Unauthorized privileges
- Data exfiltration
- Abnormal OS process behavior
- File system changes or anomalies
- Registry changes or anomalies
- Unauthorized scheduled tasks
- Application-related
 - Anomalous activity
 - Introduction of new accounts

- Unexpected output
- Unexpected outbound communication
- Service interruption
- Application logs
- Other
 - Social engineering attacks
 - Obfuscated links

Given a scenario, use appropriate tools or techniques to determine malicious activity.

- Tools
 - Packet capture
 - Wireshark
 - tcpdump
 - Log analysis/correlation
 - Security information and event management (SIEM)
 - Security orchestration, automation, and response (SOAR)
 - Endpoint security
 - Endpoint detection and response (EDR)
 - Domain name service (DNS) and Internet Protocol (IP) reputation
 - WHOIS
 - AbuseIPDB
 - File analysis

- Strings
- VirusTotal
- Sandboxing
 - Joe Sandbox
 - Cuckoo Sandbox
- Common techniques
 - Pattern recognition
 - Command and control
 - Interpreting suspicious commands
 - Email analysis
 - Header
 - Impersonation
 - DomainKeys Identified Mail (DKIM)
 - Domain-based Message Authentication, Reporting, and Conformance (DMARC)

- Sender Policy Framework (SPF)
- Embedded links
- File analysis
 - Hashing
- User behavior analysis
 - Abnormal account activity
 - Impossible travel

• Programming languages/scripting

- JavaScript Object Notation (JSON)
- Extensible Markup Language (XML)
- Python
- PowerShell
- Shell script
- Regular expressions

1.4 Compare and contrast threat-intelligence and threat-hunting concepts.

· Threat actors

- Advanced persistent threat (APT)
- Hacktivists
- Organized crime
- Nation-state
- Script kiddie
- Insider threat
 - Intentional
 - Unintentional
- Supply chain
- Tactics, techniques, and procedures (TTP)
- · Confidence levels
 - Timeliness
 - Relevancy
 - Accuracy

- · Collection methods and sources
 - Open source
 - Social media
 - Blogs/forums
 - Government bulletins
 - Computer emergency response team (CERT)
 - Cybersecurity incident response team (CSIRT)
 - Deep/dark web
 - Closed source
 - Paid feeds
 - Information sharing organizations
 - Internal sources
- Threat intelligence sharing
 - Incident response

- Vulnerability management
- Risk management
- Security engineering
- Detection and monitoring

Threat hunting

- Indicators of compromise (IoC)
 - Collection
 - Analysis
 - Application
- Focus areas
 - Configurations/ misconfigurations
 - Isolated networks
 - Business-critical assets and processes
- Active defense
- Honeypot

Explain the importance of efficiency and process improvement in security operations.

- Standardize processes
 - Identification of tasks suitable for automation
 - Repeatable/do not require human interaction
 - Team coordination to manage and facilitate automation
- Streamline operations
 - Automation and orchestration
 - Security orchestration, automation, and response (SOAR)
 - Orchestrating threat intelligence data
 - Data enrichment
 - □ Threat feed combination
 - Minimize human engagement
- · Technology and tool integration
 - Application programming interface (API)
 - Webhooks
 - Plugins
- · Single pane of glass

