

2.0 Security Architecture

- 2.1 Given a scenario, analyze requirements to design resilient systems.
 - Component placement and configuration
 - Firewall
 - Intrusion prevention system (IPS)
 - Intrusion detection system (IDS)
 - Vulnerability scanner
 - Virtual private network (VPN)
 - Network access control (NAC)
- Web application firewall (WAF)
- Proxy
- Reverse proxy
- Application programming interface (API) gateway
- Taps
- Collectors
- Content delivery network (CDN)
- Availability and integrity design considerations
- Load balancing
- Recoverability
- Interoperability
- Geographical considerations
- Vertical vs. horizontal scaling
- Persistence vs. non-persistence
- Given a scenario, implement security in the early stages of the systems life cycle and throughout subsequent stages.
 - Security requirements definition
 - Functional requirements
 - Non-functional requirements
 - Security vs. usability trade-off
 - Software assurance
 - Static application security testing (SAST)
 - Dynamic application security testing (DAST)
 - Interactive application security testing (IAST)
 - Runtime application selfprotection (RASP)
 - Vulnerability analysis
 - Software composition

- analysis (SCA)
- Software bill of materials (SBoM)
- Formal methods
- Continuous integration/ continuous deployment (CI/CD)
- Coding standards and linting
- Branch protection
- Continuous improvement
- Testing activities
 - Canary
 - Regression
 - Integration
 - · Automated test and retest
 - Unit

- · Supply chain risk management
- Software
- Hardware
- Hardware assurance
- Certification and validation process
- End-of-life (EOL) considerations

- 2.3 Given a scenario, integrate appropriate controls in the design of a secure architecture.
 - Attack surface management and reduction
 - Vulnerability management
 - Hardening
 - Defense-in-depth
 - Legacy components within an architecture
 - Detection and threathunting enablers
 - Centralized logging
 - Continuous monitoring

- Alerting
- Sensor placement
- · Information and data security design
- Classification models
- Data labeling
- Tagging strategies
- DLP
- At rest
- In transit
- Data discovery

- · Hybrid infrastructures
- · Third-party integrations
- · Control effectiveness
- Assessments
- Scanning
- Metrics

Given a scenario, apply security concepts to the design of access, authentication, and authorization systems.

- Provisioning/deprovisioning
- Credential issuance
- Self-provisioning
- Federation
- Single sign-on (SSO)
- Conditional access
- Identity provider
- Service provider
- Attestations
- Policy decision and enforcement points

- Access control models
- Role-based access control
- Rule-based access control
- Attribute-based access control (ABAC)
- Mandatory access control (MAC)
- Discretionary access control (DAC)
- · Logging and auditing
- Public key infrastructure (PKI) architecture
- Certificate extensions

- Certificate types
- Online Certificate Status
 Protocol (OCSP) stapling
- Certificate authority/registration authority (CA/RA)
- Templates
- Deployment/integration approach
- · Access control systems
- Physical
- Logical

Given a scenario, securely implement cloud capabilities in an enterprise environment.

- Cloud access security broker (CASB)
- API-based
- Proxy-based
- Shadow IT detection
- Shared responsibility model
- CI/CD pipeline
- Terraform
- Ansible
- Package monitoring
- Container security
- Container orchestration

- Serverless
- Workloads
- Functions
- Resources
- API security
- Authorization
- Logging
- Rate limiting
- · Cloud vs. customer-managed
- Encryption keys
- Licenses

- · Cloud data security considerations
- Data exposure
- Data leakage
- Data remanence
- Insecure storage resources
- · Cloud control strategies
- Proactive
- Detective
- Preventative
- Customer-to-cloud connectivity
- · Cloud service integration
- Cloud service adoption

2.6 Given a scenario, integrate Zero Trust concepts into system architecture design.

- Continuous authorization
- Context-based reauthentication
- Network architecture
- Segmentation
- Microsegmentation
- VPN
- Always-on VPN
- API integration and validation
- Asset identification, management, and attestation
- · Security boundaries
- Data perimeters
- Secure zone
- System components

- Deperimeterization
- Secure access service edge (SASE)
- Software-defined wide area network (SD-WAN)
- Software-defined networking
- Defining subject-object relationships

