

-3.0 Security Engineering

- Given a scenario, troubleshoot common issues with identity and access management (IAM) components in an enterprise environment.
 - Subject access control
 - User
 - Process
 - Device
 - Service
 - Biometrics
 - · Secrets management
 - Tokens
 - Certificates
 - Passwords
 - Keys
 - Rotation
 - Deletion

- Conditional access
- User-to-device binding
- Geographic location
- Time-based
- Configuration
- Attestation
- · Cloud IAM access and trust policies
- Logging and monitoring
- Privilege identity management
- Authentication and authorization
- Security Assertions Markup Language (SAML)
- OpenID

- Multifactor authentication (MFA)
- SSO
- Kerberos
- Simultaneous authentication of equals (SAE)
- Privileged access management (PAM)
- Open Authorization (OAuth)
- Extensible Authentication Protocol (EAP)
- Identity proofing
- Institute for Electrical and Electronics Engineers (IEEE) 802.1X
- Federation
- 3.2 Given a scenario, analyze requirements to enhance the security of endpoints and servers.
 - Application control
 - Endpoint detection response (EDR)
 - Event logging and monitoring
 - Endpoint privilege management
 - Attack surface monitoring and reduction
 - Host-based intrusion protection system/host-based detection system (HIPS/HIDS)
 - Anti-malware
 - SELinux
 - Host-based firewall
 - · Browser isolation

- · Configuration management
- Mobile device management (MDM) technologies
- Threat-actor tactics, techniques, and procedures (TTPs)
- Injections
- Privilege escalation
- Credential dumping
- Unauthorized execution
- Lateral movement
- Defensive evasion

3.3 Given a scenario, troubleshoot complex network infrastructure security issues.

- Network misconfigurations
- Configuration drift
- Routing errors
- Switching errors
- Insecure routing
- VPN/tunnel errors
- IPS/IDS issues
- Rule misconfigurations
- Lack of rules
- False positives/false negatives
- Placement
- Observability
- Domain Name System (DNS) security

- Domain Name System Security Extensions (DNSSEC)
- DNS poisoning
- Sinkholing
- Zone transfers
- Email security
- Domain Keys Identified Mail (DKIM)
- Sender Policy Framework (SPF)
- Domain-based Message Authentication Reporting & Conformance (DMARC)
- Secure/Multipurpose Internet Mail Extension (S/MIME)

- Transport Layer Security (TLS) errors
- Cipher mismatch
- PKI issues
- · Issues with cryptographic
- implementations
- DoS/distributed denial of service (DDoS)
- · Resource exhaustion
- Network access control list (ACL) issues

Given a scenario, implement hardware security technologies and techniques.

- · Roots of trust
- Trusted Platform Module (TPM)
- Hardware Security Module (HSM)
- Virtual Trusted Platform Module (vTPM)
- Security coprocessors
- Central processing unit (CPU) security extensions
- Secure enclave

- Virtual hardware
- Host-based encryption
- Self-encrypting drive (SED)
- Secure Boot
- Measured boot
- Self-healing hardware
- Tamper detection and countermeasures
- Threat-actor TTPs
- Firmware tampering

- Shimming
- Universal Serial Bus (USB)-based attacks
- Basic input/output system/Unified Extensible Firmware Interface
- (BIOS/UEFI)
- Memory
- Electromagnetic interference (EMI)
- Electromagnetic pulse (EMP)

3.5 Given a set of requirements, secure specialized and legacy systems against threats.

- Operational technology (OT)
- Supervisory control and data acquisition (SCADA)
- Industrial control system (ICS)
- Heating ventilation and air conditioning (HVAC)/environmental
- Internet of Things (IoT)
- System-on-chip (SoC)
- Embedded systems
- Wireless technologies/ radio frequency (RF)
- Security and privacy considerations
- Segmentation
- Monitoring

- Aggregation
- Hardening
- Data analytics
- Environmental
- Regulatory
- Safety
- · Industry-specific challenges
- Utilities
- Transportation
- Healthcare
- Manufacturing
- Financial
- Government/defense

- Characteristics of specialized/ legacy systems
- Unable to secure
- Obsolete
- Unsupported
- Highly constrained

- 3.6 Given a scenario, use automation to secure the enterprise.
 - Scripting
 - PowerShell
 - Bash
 - Python
 - · Cron/scheduled tasks
 - Event-based triggers
 - Infrastructure as code (IaC)
 - Configuration files
 - Yet Another Markup Language (YAML)
 - Extensible Markup Language (XML)
 - JavaScript Object Notation (JSON)
 - Tom's Obvious, Minimal Language (TOML)

- Cloud APIs/software development kits (SDKs)
- Web hooks
- Generative Al
- Code assist
- Documentation
- Containerization
- Automated patching
- Auto-containment
- Security orchestration, automation, and response (SOAR)
- Runbooks
- Playbooks

- · Vulnerability scanning and reporting
- Security Content Automation Protocol (SCAP)
- Open Vulnerability Assessment Language (OVAL)
- Extensible Configuration Checklist Description Format (XCCDF)
- Common Platform Enumeration (CPE)
- Common vulnerabilities and exposures (CVE)
- Common Vulnerability Scoring System (CVSS)
- · Workflow automation
- 3.7 Explain the importance of advanced cryptographic concepts.
 - Post-quantum cryptography (PQC)
 - Post-quantum vs. Diffie-Hellman and elliptic curve cryptography (ECC)
 - Resistance to quantum computing decryption attack
 - Emerging implementations
- Key stretching
- Key splitting
- Homomorphic encryption
- Forward secrecy
- Hardware acceleration
- Envelope encryption
 - · Performance vs. security

- Secure multiparty computation
- Authenticated encryption with associated data (AEAD)
- Mutual authentication
- 3.8 Given a scenario, apply the appropriate cryptographic use case and/or technique.
 - Use cases
 - Data at rest
 - Data in transit
 - Encrypted tunnels
 - Data in use/processing
 - Secure email
 - Immutable databases/blockchain
 - Non-repudiation
 - Privacy applications
 - Legal/regulatory considerations
 - Resource considerations
 - Data sanitization

- Data anonymization
- Certificate-based authentication
- Passwordless authentication
- Software provenance
- Software/code integrity
- Centralized vs. decentralized key management
- Techniques
- Tokenization
- Code signing
- Cryptographic erase/obfuscation

- Digital signatures
- Obfuscation
- Serialization
- Hashing
- One-time pad
- Symmetric cryptography
- Asymmetric cryptography
- Lightweight cryptography